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ABSTRACT

A mathematical model for nonlinear heat flow in a rigid body of

material with memory leads to the integrodifferential equation problem:

ut
(t,x) = 1 aCt  — T)a(u (t,x))dt + f(t,x) (0 < t < ~~, x e ~~)

(HF) 
-

u(0 x) ~.i0
(x) (x € R)

which is analyzed by an energy method developed jointly with C. N. Dafermos .

Global existence, uniqueness , boundedness and the decay of smooth solutions

as t -~~ are established for sufficiently smooth and “small” data, under

physically reasonable assumptions.

AIlS (MOS) Subject Classifications: 45K05, 47Hl5, 471110, 45M99, 35L60

Key Words: Nonlinear Volterra integrodiffarential equations (of hyperbolic
type) , Global existence and uniqueness, Smooth solutions,
Boundednese , Asymptotic behaviour, Energy method, Resolvent
kernels, Frequency domain method, Nonlinear heat flow in
materials with men~ ry
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SIGNIFICANCE AND EXPLANATION

Problem (HF) stated in the Abstract is a mathematical model for nonlinear
heat flow (with a finite speed of propagation) in an unbounded one-dimensional
rigid body of material with “memory”. With an appropriate interpretation of
the term O(U )x (HF) has a valid physical meaning in two and three space
dimensions.

To motivate the rather technical assumptions concerning the kernel a
used in the analysis we derive (HF) from physical principles using the internal
energy and the heat flux in such a body, expressed as certain functionals of
the temperature and of the gradient of the temperature respectively, and then
applying the balance of heat law. The, assumptions on a are then motivated
by physical and partly mathematical arguments involving the internal energy
and heat flux response functions. Such arguments seem to have been omitted
in earlier literature.

Problem (HF) cannot conveniently be solved explicitly, even in the linear

case (a(F;) = c2F;, F; e ]R, c a constant). We use an energy method developed
jointly with C. M. Dafermos (MRC Technical Summary Report #1876 - Communica-
tions in PDE, to appear) to explain that, under physically reasonable assumptions
on the functions a, a, f u

0
, problem (HF) has a unique, global smooth solu-

tion u € c2( [0,oo) x p), provided the data u
0 

and f are sufficiently

smooth and “small”. Moreover; this solution has a finite speed of propagation
and possesses certain boundedness and decay properties as t + ~~. The
restriction to small data is needed to preclude the development of “shock”
solutions due to possible crossing of characteristics of a related nonlinear
wave equation. An interpretation of the result is that the memory term in
(HF) provides a dissipative mechanism which has a smoothing effect for “small”,
smooth data, under physically reasonable conditions on the kernel a.

The energy method rests on an auxiliary inequality (equation (3.8))
which is derived by a simple “frequency domain” argument using the properties
of a. The remarks following Lemma 3.3 suggest new and physically meaningful
conditions on a (expressible in terms of the energy and heat flux response
functions) for the application of the energy method. Such generalizations
are under active study.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC , and not with the author of this report.
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A NONLINE~.R HYPERBOLIC VOLTERRA EQUATION ARISING IN HEAT FLOW

John A. Nohel

Introduction. In this largely expository paper which is based on recent joint

work with C. M. Dafermos [11 we use energy methods to discuss the global existence,

uniqueness, bóundedness , and decay as t * of smooth (C2) solutions of the
nonlinear Cauchy problem

t
u~

(t ,x) = f a(t_s)a(u
x
(s,x))xds + f (t ,x )  (0 c t c ~~~, x e

(HF)

u(0 ,x) = u0 (x) C x e  I~)

for appropriately smooth and “small” data u
0
, f. Here a : (0,~ ) 

-
~~ R, Q : R~~ P

(0(0) 0), f : (0,co) X P~~ P, 11
0 
: ]R+R are given functions satisfying assump-

tions motivated partly by physical considerations sketched below, and partly by

the method of analysis; subscripts in (HF) denote partial derivatives. Some

comments on closely related initial-boundary value problems are made following

the statement of the main result (Theorem 2.1). With appropriate interpretation

of the term a(u )
~~
, problem (HF) has a valid physical meaning in any number of

space dimensions , and we refer to El , The. 7.13 to such a problem in P
2 studied

by an extension of this method . An earlier study of (HF) by Mac Cazzy (63 is based

on the method of Rieznann invariants and is therefore restricted to a single space

dimension. The present method which yields more widely applicable results even

Research sponsored by the United States Army under Grant No DMG29-77-G—0004
and under Contract No DMG29-75-C-0024
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in one space dimension is more direct and simpler. For a similar approach to

a problem in nonlinear viscoelasticity we refer the reader to 11, Theorem 5.lJ
and to Mac Camy [71 for the Riemann invariant approach.

To motivate the assumptions to be imposed , particularly wi th regard to
the kernel a , we consider briefly the problem of nonlinear heat flow in an

unbounded one—dimensional rigid body of a material with memory. let u(t ,x) ,

c(t,x), q(t,x), and h(t,x) denote respectively the temperature, the internal

energy, the heat flux, and the external heat supply at time t and position x.

Following Gurtin and P ipkin [2) , and also Mac Camy [6], we assume a model for heat

flow in which E (t ,x) and q( t ,x) are respectively the following functionals

of the temperature u and of the gradient of temperature ux :

t
(1.1) c(t,x) = bu(t ,x) + f B ( t  — s)u(s,x)ds (0 < t < =, x e p)

(1.2) q(t,x) — y (t  - s) a (u (s ,x) ) ds (0 ~ t < ~~~, x e P)

it is assumed that the history u0 (t ,x) of u (and hence also the history

u0
(t ,x) of the temperature gradient) is prescribed up to t = 0 and for

x e P. We can assume without loss of generality that u0 (t ,x) 0 , (t < 0,

x €  P); for if that is not the case. it is easily seen from what follows that

this merely alters the forcing term f in (HF). It is reasonable to assume

that a : P -* ]R is a smooth function satisfying 0(0)  = 0 , a ’ (O) > 0 (in fact ,

> c > 0 , (F ; C IR) - recall that for linear heat flow a ( F ; )  = cF ;, c > 0

a constant) . We shall assume that b > 0 is a given constant and that the

given smooth “memory” functions ~ ,y e L1(0, °°) ; thus c(t ,x) and q( t , x) are

bounded whenever u ( t ,x) and u ( t ,x) are bounded . It should be noted that

in the applied literature 8,y are linear combinations of decaying exponentials

with positive coefficients.

If h ( t ,x) denotes the external heat supply, the balance of heat requires
that

(1.3) 
~t

(t . x) = —q~~(t ,x) + h (t , x) (0 < t < ~~~, x e .

substituting (1.1) , ( 1.2) into (1.3) , and using the assumption that u (t ,x) 0

for t ~ 0 , x e P yields
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t t
bu
~
(t ,x) + 

~~ 
f ~(s)u(t - s,x)ds = f y(t - s)a(u

~
(s,x)) ds + h(t,x)

0 0

or equivalently

t t
(1.4) bu

~
(tix) + f $(t — s)u

~
(t — s,x)ds = f y(t — s)a(u (s,x))ds

0 0

+ h( t ,x) — 8(t)u(0,x)

where we also prescribe the value u(O,x) = u0
(x), x E JR. To reduce (1.4) to

(HF) define the resolverit kernel p of B by the relation

( p )  b p ( t )  + (B*p) (t) = — 
8 ( t)  

(0 < t <

where here and in what follows * denotes the convolution on [0,t]. It follows

from standard theory of linear Volterra equations that (p) has a unique solution

p € C1(0,=). If g is a given function on [0,~ ), the solution of the

Volterra equation

(V) by(t) + (8*y) Ct) = g(t) (0 < t <

is given by the variation of constants formula

(1.5) y(t) = + (p*g) (t) (0 < t < ) -

Applying (1.5) with y = u~ and g the right-hand side of (1.4), one sees

that (1.4) is equivalent to (HF) with

(1.6) a(t) y(t) + (p *y) (t )  0 < t <

(1.7) f(t,x) (h(t ,x) — B(t)u
0
(x)) + p*(h(t,x) — B (t)u

0
(x))

(0 < t < ~~ , X e  P).

- 

- - 
To ~notivate the assumptions to be imposed on a, we note from (1.1) and

(1.5) that

u ( t , x )  = ~~( t ,X) 
+ (p *e) (t ,x)  (0 < t < ~~~, x € R)

wherc’~ p is the resolvent of B. If p C L’(0 ,~o) then ~ bounded implies
u bounded. But since we assumed ~ C L

1
(0 ,00), the Paley-Wiener theorem

—3— 
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applied to equation (p) yields that p e L~ (0,) if and only if

B(s) * —b for Re 5 ~ 0

where i(s) = f exp(—st)8(t)c3t. But the internal energy £ is positive and

so from (1.1)

b + f 8(t)dt = b + ~(0) > 0

Therefore, the Paley—Wiener condition can be modified to the statement :

p € L1(0,c) if and only if

(1.8) Re B (s )  + b > 0, (Re s > 0)

The assumption y C L1(O,c~)fl C 1[0 ,00) , together with ( 1.6) , then imply that

a C L110,00) fl C~~I0, oo) , and an easy calculation using (p) and (1.6) shows that

(1.9) a(s) = (Re s > 0) -

b + B(s)

For physical reasons and (1.2) one needs to require I y ( t) d t  > 0, and so it

also follows from (1.9) that 0

f y(t )d t

(1.10) f a(t)dt = a(0) 0 
> 0

0 
b + f  8(t)dt

0

Physically the function y represents the heat flux relaxation function , and

it is reasonable to assume that 1(0) > 0. It then follows from (1.6) that
1a(0) y( 0)  > 0. If, as is reasonable, it is also assumed that y ’ (0) < 0

and 8(0) > 0, one also has from (1.6) that a’(O) = ~~
- y ’ (O)  + p(0)y(0)

‘(0 — 
8(0)y(0) 

< 

b

b~~ ~ b
To summarize, the following assumptions concerning the kernel a in (HF)

are reasonable for the heat flow problem:

(1.11) a e  ê[O, .’~) Cl L~~(O, 4x), a(0) > 0 , a ’ (0) c o . f a( t)dt  ~ 0 ;

—4— 

~r ~~~~~~~
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as we shall see below we shall require additional smoothness of a, as well as

a positivity “frequency domain” condition involving the Laplace transform of a.

The implications of this condition are discussed in Lemma 3.3 and Remarks

following it.

In the analysis of (HP) which follows we shall impose other technical

assumptions (see assumptions (a), (a), (f), (un
) below). To motivate our result

for (HF) assume for the moment that a(t) a(0) > 0 for t > 0. Then (HF)

is formally equivalent to the Cauchy problem

(N) ~~~ = a(O)a(u ) + u(O,x) = u0
( x ) ,  u

~~
(O sx ) = u1

(x) = f ( 0 ,x)

If a is “genuinely nonlinear ” (a ” ( F ;)  ~ 0 , F; € IR) , Lax [31 has shown that

(N) fails to have global smooth solutions in time (even if 0), no matter

how smooth one takes the initial data due to the development of “shocks” (the

first derivatives of u develop singularities in finite time due to the

crossing of characteristics). Note that a(t )  E a ( O )  is excluded by (1.11).

Nishida (81 has shown that for the nonlinear wave equation with frictional

damping

( N )  ~~~ + ~~~ 
= a ( O ) a ( u ) ,  u ( O ,x) = u0 (x) , u~~

(O ,x) u1
( x ) ,  a( 0 )  > 0

the dissipation term cLu~~ 
cz > 0, precludes the development of shocks if the

initial data are sufficiently smooth and “small”. The proof rests on the concept

of Riemann invariant and is restricted to one space dimension. For a generaliza-

tion of Nishida ’s method to the forced equation (W) we refer to Nohel [9]. As

will be seen in (3.3) below, (HF), under physically reasonable assumptions, is

equivalent to a variant of (w) with an additional memory term which makes our

result for (HF) (Theorem 2.1) plausible. The Nishida approach applied to (HF)

(necessarily restricted to one space dimension) was studied by Mac Camy [61.

2. Statement of Results. We make the following assumptions. Concerning a let

a e c3 (R) , a(O) = 0, a’(O) > 0 ,

the first for technical reasons , the others on physical grounds (recall that in
~~~

.

the linear version of (HF) 0(11 ) us) .  Concerning the kernel a assume

4 
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( i)  a C [O ,~ )

(ii) a(0) > 0, a’(O) < 0

i~iii . t~a
(m) e L1(0,~ ) (j,m 0,1,2,3)

(a)

(iv ) letting ~ (in ) = f e~~~
ta(t)dt

(2. 1) Re ~ ( in )  > 0 (rI C

where 1O ,°’) is the set of functions with bounded continuous derivatives

up to and including order m. From (1.11) above the conditions a C C1 (0 ,cO) ,

a C L1 (O ,00), a(0) > 0, a’(O) < 0, a (c3)=f a(t)dt>O are reasonable on physical

grounds; the remaining ones are needed fgr technical reasons of the analysis.

See additional remarks on alternatives to the frequency domain condition (2.1)

following Lemma 3.3 below. Concerning the forcing term f we assume (essentially

for technical reasons)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C L

2 (O ,°~~L
2 (JR))

The initial datum u
0 

is assumed to satisfy

(u
0
) u

0~~
u
0~~

su
0~~~ 

e L~ (JR) -

Note that in no assumption is explicitly made about u0
(x); however, for

the particular physical problem one would also have to require u~ C L
2(P) in

order that f defined by (1.7) satisfy (f). Our result concerning (HF) is

(see [lt  Theorem 4.1]):

Theorem 2.1. Let the assuxnptions (0) , (a) ,  ( f ) , (u~ ) hold. If the

norm of u0 and the L2 ( (0 ,4x ) ; L 2 (P) ) norms of f and its derivatives listed

in ( f )  are sufficiently small, then the Cauchy problem (HF ) has a unique solu

tion u e c2 ( 1o ,OD) x It) with the following properties:

C i) u~~,u 
~~~~~~~~~~~~~~ “ ,U

ta ,C
,U

3~~~~~
E L~ ( [0 ,cci) ;L 2 (It) )

2 2(i i)  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

e L ((0 ,~~) ;L  (It ) )

(i i i)  ut
(t

~~
.) , utt

(t
~

.) , u
~~~

(t
~

.) .U xx
(t . .) -

~~ 
Q in t.2 (P) as t -

~~ ~~ ,

(iv) 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

as t~ uniformly on It.

-6-
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We remark that conclusions (iii), (iv) are easy consequences of U), (ii).

It also follows from the proof that the solution u has a finite speed of

propagation.

We also note that the results of Theorem 2.1 hold (with essentially the

same proofs) for the following two problems of heat flow in a body on the
S interval [0,1] (see (1, Theorem 6.1]):

(i) (HF) on (O,cc) x (0,1) with homogeneous Neumann boundary conditions

at x = 0 and x 1, and with u
0
(x) prescribed on [0,1);

(ii) (HF) on (O ,oo) x (0,1) with homogeneous Dirichlet boundary conditions

at x = 0 and x = 1, and with u
0
(x) prescribed on 10,11 .

In both problems assumptions (a) and (a) are unchanged while assumptions (f)

and (u0) hold in L2[(O ,l) : L
2(]R)) and in L2(O ,l) respectively. For

problem (ii) one adds the assumption f(t,O) f(t,l) = 0.

For a version of (HF) in two space dimensions and with a similar but

technically more involved proof we refer the reader to 11 , Theorem 7.1].

We note also that (HF) is of the abstract form

t
u’(t) + f a(t — i)Au(t)dt = f ( t )  (0 c t < cc)

(A)

u(O) =

where A is the nonlinear operator Au = - 
~~
— o(u ) plus appropriate c onditions

at ±= or suitable boundary conditions at x = 0 and 1. Such abstract

problems have been recently studied by Londen [4], [5] for a class of kernels

a (S) which are positive, decreasing , convex on [0,oo) and which satisfy the

condition a’ (0+) = -cc which is crucial for his technique. In addition, the

solution obtained by tonden is not sufficiently regular , and no comparable decay

results are obtained .

Finally , we observe that a comparison of Theorem 2.1 and of its proof with

th’~ results and method of proof by Mac Camy (61 shows that our approach is more

direct, not restricted to one space dimension , and yields more general results

(see additional remarks following Lemma 3.3).

3. Outline of Proof of Theorem 2. 1. To simplify the exposition we shall assume

that f 0 in (HF), and we refer the reader to Ill for the technically more

involved treatment resulting from f * 0; the method is unaltered by this

simplification.

—7—
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a. Transformation of (HF). Differentiation of (HF) with respect to t brings

it to the form

~ 
u~~~(t ,x) = a(O)o (u) (t,x) + (a ’*a (u))(t ,x )

(3.1) u(0 ,x) = u0
(x), u

~
(Oix) 0 (x €

We transform (3.1) to an equivalent form by observing that this equation is

linear in y = a (u). Define the resolvent kernel k of a’ by the equation

(k) a(0)k(t) + (a ’*k)(t) — (0 < t < cc)

since a(O) > 0, assumptions a(i) imply that k is uniquely defined and

k € c2(O ,oo) (k has other properties — see Lemma 3.3 below). By the variation

of constants formula for linear Volterra equations one has

a(O)y + a ’*y = <=> y ~p/a(O) + k*~

for any given fw~ction p . Applying this to (3.1) one sees that if u is a

classical solution of (HF) with f E 0, then u satisfies the equation

~~~ + a(0)k*u~~ 
= a(0)a(u ) .

Performing an integration by parts and using u
t(0.x) 0 shows that (HF) with

f 0 is equivalent to the Cauchy problem

u
~~
(t
~
x) + a ( O)  ~~ (k*u t ) ( t ,x) = a(O)a(u (t,x)) (0< t < c c , X E  It)

(3. 2)
u(0 ,x) = u0

(x) , ut (O
~

x) E Q  (X E  I t) .

Another important equivalent form of (HF) with f 0 resulting from (3.2) is

u
~~
(t,x) + a(O)k(O)u

~
(t
~
x) a(O)a(u (t,x))

~ 
- a(0) (k ’ *u~

) ( t ,x)

(3.3) (0 < t < cc~ x C It)

u (0 ,x)  = u0
(x) , u

~~
(O

~
x) 0 (x e p)

Since a (0 )k ( O)  —a ’ (0) > 0 , (3.3) ,  suggests the dissipative mechanism induced
by the memory term in (HF) and the relationship with the damped wave equation
(W). We remark that if f * 0 in (HF) one adds the forcing term

•( t ,x )  = f t (t .x)/ 5(0)  + (k*f
~

) ( t ,x) + a(O)k(t)f(0,x) to (3.2) and (3.3), and

-

: one replaces the zero initial condition by u
~~

(O ,
~ 

= f ( O ,x ) .

-8- 
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The proof of Theorem 2.1 is carried out in two stages: (i) A suitable

local existence and uniqueness result is established . (ii) A priori estimates

are established to continue the local solution; these will at the same time

yield conclusions ( i ) , (ii) of Theorem 2. 1 .

b. Local Theory. We shall make the temporary additional assumption concerning C:

(a) there exists p
0 

> 0 such that a ’ ( F ; ) > p
0 

> 0 (F ; e It)

Proposition 3.1. Let the assumptions (a), (a), (U
0
) hold, and let

k ’ , k” C C[0,cc) (~ L
1 (0,’°). Then the Cauchy problem (3.2) (resp. (3.3)) has a

unique solution u e C2([0,T
0
) x It) on a maximal interval IO,T

0
) x It,

< +~~, such that for T € [0,T0
) one has

(i) all derivatives of u of orders one to three inclusive C L
cc
([O ,TJ; L2(]R));

(ii) if T
0

<~~, then

‘: 
[u~~(t ,x) + u2 (t ,x) + u

~~t
(t ,x) + -“  + U

2 (t ,x) ]dx  -~ cc as t -
~

We remark that the property of finite speed of propagation of solutions of (HF)

is an easy consequence of the proof of Proposition 3.1.

The proof uses the Ranach fixed point theorem. Let X(M,T) be the set of

functions u E C2([0,T) x It) for any T > 0 such that u(0,x) =
u
~
(O
~
x) = 0 and such that

cc 2(i)  
~~~~~~~~~~~~~ 

,u € L ( ( 0 ,T J ;  L (It ) )  and

(ii) sup f 1u~~(t ,x) + u2 (t ,x) + u
~~~

(t
~
X) + •

~~~~

• + U~ (t ,~~) 1d x < M 2 
-

[0,T) -cc - 
XX

Note that X(M,T) is not empty if M is sufficiently large, and that if
u~~ X(M,T), then

(iii) sup {Iu t(t ,x)I,
~
u (t ,x)l,

~
u t(t ,

~
t )I , I

~
1t~

(t ,x)I ,I11 
~~

(t , X ) I }  < M  -

(O,TJxR x

Let S be the map: X(M,T) -
~~ C

2((0,T] x It) which carries a function v C X ( M ,T)

into the solution of the linea r Cauchy problem (see (3.3) for motivation)

Sf
~

~1

j  
-9- 
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u
~~~

(t ,x) + k ( O ) u
~~

( t x )  = a (O ) [a ’( v (t , x ) ) u  (t x) — (k ’ *v~
) ( t i x ) )

(3. 4) (0 < t < T, x e It)

u ( 0 ,x) = u0
(x) , u

~~
(O ,x) = 0

Clearly a fixed point of S will be a solution of (3.2) (respectively (3.3)).

To apply the Banach fixed point theorem to the map S one first shows (by an

energy argument, for details see [1. Lemma 3.1]) that if M is sufficiently

large and if T is sufficiently small, then S maps X (M,T) into itself.

One next equips X(M,T) with the metric

1

p(u,u) = max {f I(u
~

(t ,x) — u
t
(t
~
x))

2 + (u (t ,x) - u (t,x))
2]dx}

2

[O ,T] -cc X

By the lower semicontinuity of norms under weak convergence in Banach space ,

X(M,T) becomes a complete metric space. One then shows that for M suff i-

ciently large and T sufficiently small the map S is a strict contraction of

x ( M ,T) and the proof of Proposition 3.1 is completed in a standard manner (for

details see [1 , Lemma 3.2]).

If a, k, u
0
, u

1 
are smoother , the solution becomes smoother. A precise

regularity result which is needed for the a priori estimates is

Proposition 3.2. Let the assumptions of Proposition 3.1 be satisfied. In addi-

tion, assume that

(3.5) 0 € C~ (It) , u C
Oxxxx

Then the solution u of ?roposition 3.1 has the addition property

cc 2(3.6) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ E L ((0,T]; L (It))

for every T < T
0
, where ‘0,T0

) )C ~ is the maximal interval of existence.

For the proof see (1, Theorem 3.2] .
c. A Priori Estimates and Continuati~ii. We wish to show that the maximal

— 

interval [O,T
0
) of Proposition 3.1 is in fact [0 ,cc). Recall that the local

theory assumes that (a ) is satisfied; this assumption will be removed. The a

priori estimates will be deduced from equation (3.2) above. We shall restrict

the range of u (t,x) for a local solution u to the set on which a ’ ( - )  > 0;

cbooz’e C
0 

> 0 such that

-10- 
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(3.7) a’ (w) > p
0 

> 0, w € f—c
0
•c
0
]

We wish to show that there exists a constant p > 0, p < C
0
, depending on

p ,  f Ik’(tHdt, max {Ia ’(~)I, a” ()I , Ia ”(~)I}, but not on T > 0
0 [—c o,co

]

.
‘ such that if the local solution u of (3.1) satisfies

(~ *) sup {lu t(t ,x) f , u~ (t ,x) I’ Iu~ 
(t,x) 

~~
, Iu (t,x) 3 p

0<t<T,xE]R

then certain functionals of the solution u are controllably small (i.e. these

functionals can be made arbitrarily small by choosing the initial data suff i-

ciently small in the appropriate H norms). More precisely , the result of the

a priori estimates which follow is that if the assumptions of Theorem 2.1 hold

(with f 0) and if the H2(]R) norm of u
0 

is sufficiently small, then for

as long as the local solution u of (3.2) satisfies the condition (p ) for

p > 0 sufficiently small , the condition

cc
** 2 2 2 2

~ 
~~ 

[u~(s,x) + u ( s ,x) + u
~~

(s ,x) + •“  + u ( s ,x)]dx

+ 1

s 

~~: 

[u~ (t,x) + u~~~
(t
~

x + . 
~~

- + u2 (t ,x)Jdxdt < (0 < s < T)

is ~atisfied . The inequality (p ) in turn implies that condition (p ) holds

and the cycle closes in a standard manner using Proposition 3.1. Thus the

maximal interval of existence of the solution u(t,x) is (O ,cc) x It and ( p )

holds for 0 < S < cc~ This proves properties (i) and (ii) and Theorem 2.1.
**To establish the a priori inequality (p ) we shall work with the equivalent

form (3.2) of (HF) and we require some additional properties of the resolvent

kernel k.

Lemma 3.3. Let assumptions (a) be satisfied and let k be the resolvent kernel

of a’ defined by equation (k). Then

C B~ [0°~’) k(0) = — 
a (0) 

> 0
(a(0)]

‘ii) k(t) = k + K(t), Ic = _ .L_ > 0; ~
(m) 

~ I}(0,cc), m = 0,1,2
a(0)

(iii) for every T > 0 and for every v e L210,T] there exists a nuther

y > 0 such that
5 .-
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(3.8) 
T 
v(t) (k*v) (t )dt  > •

~ 

T 
v2(t)dt

Remarks on Lealna 3.3. We refer to [6, Lemma 3.1] for the proof of Lemma 3.3

and to (1. Lemma 2.11 for some comments and corrections of that proof. Here

we make some additional comments concerning the energy inequality (3.8) which

is of independent interest. If, as is the case here k’ e L
1(0,cc), the

inequality (3.8) is derived by the following simple argument (see the method

of (10 , Theorem 1]) .  Extend Ic ’ evenly for t < 0, and let

fv (t )  if t C (0,T]
vT
(t) =

0 otherwise -

Then -

v(t) (k*v ) (t)dt = k(0) f v2(t)dt + 
T 
v(t) (k’*v) (t)dt

k(0) f v
2(t)dt + 4! v(t) 

T 
k’(t - t)v(T)drdt

= k ( 0 )  

~: 
v~ (t)dt + L vT(t) L,, k ’  ~ - T)v

T
(T)dTdt .

Letting V
T
(n) 

~cc 

e vT (t )dt
~ 

(ri € It), the Parseval and convolution

theorems give 
cc

— 

T 
v(t) (k*v) (t)dt = 

k(O) 

~: 
‘;T~~~ 

I
2
dn + 

~~ ~: ~~~~~ 
~~~ (~ )d~

But k’(fl) — 2Re k’(iY)), where is the Laplace transform, and Re k’(in) =

Re(iflk(ifl) - k(0)J. Therefore,

f v(t) (k*v) (t )dt  = 

~~ T~~~~
2R5

~~~~~~~~~1~~

Now an easy calculation from equation (k) yields

Re i~k ( i~) — Re = Re £(in)

~ (in) I~
(in) I

—3 2—
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Thus , to prove the ineqaulity (3.8) it suff ices to establish the existence of

> 0 such that

( ne  It) -

Ia(in) I
This is precisely what is done with the aid of assumptions (a) in f 6, Lemma 3.11,

although Mac Cainy ’s derivation of (3.8) is different from the above and

unnecessarily complicated. The above suggests that the frequency domain condi-

tion (2.1) in assumptions (a) should be replaced by the condition

(S) there exists a > 0 such that a Re £(in) > f~ (in) 1
2 ( C It)

The importance of condition (S) was first recognized by 0. J. Staffans [11)

in a different context. He showed (11, Theorem 2] that condition (S) is

satisfied for at least two classes of kernels of importance for the problem (HF)

( a C L1(0 ,co) (~ BV[0,°°) and a strongly positive on (0 ,°°) ,
( i ) 1  

2 1
~ 
i.e. there exists an c > 0 such that Re ~ (in) > c(l + ri

and

a C L
1(0,°°) and a and -a’ are nonnegative and convex

S (~~) i
on (O ,cc) (here a(0+) = —a’(O+) = +cc are allowed ) -

Staffans also gives an example of a kernel which is a positive definite measure

p satisfying (S), but such that p is not strictly positive (Re ii (in) > 0).

Incidentally, it is not hard to show that if a C L1(0,cc), a(0) > 0, and

a is either strongly positive on (0,00) or a satisfies condition (S), then

a’(O) < 0. It is also important to notice that if a satisfies (S) and a(ifl)

is defined as a function (e.g. if a € L1(0 ,o~) ) ,  then ~(i~) can vanish at

most on a set of measure zero on the imaginary axis.

The above considerations suggest that the energy inequality (3.8) is true

under other useful conditions which are much more general than assumptions (a),

- 
- and such results are now being obtained .

The remainder of this section is devoted to the derivation of the a priori
• **

estimates which imply (p ). Define

w 
2(3.9) W(w) f ~ (F ;)d F ;  > -

~
2- w w C [—c

0
,C
0
]

0

—13—
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where the inequality follows from (3.7). Let u be a local solution of (3.2)

satisfying (p ) for some T ~ 0 and 0 < p < c
0
. Multiply (3.2) by u~ and

integrate over (0,s] x p. Using (3,9) and Lemma 3.3 (iii) one obtains the

estimate (recall we are doing the special case f 0 in (HF) so that u
~
(O.x) ~ 0)

(3. 10) 
~ L u~~(s,x)dx + a(0) L W(u (s,x))dx + 

~ !~ 
u~ (t,x)dxdt

< a(0) W (u
~
(osx))dx (0 ‘C $ < T)

where an integration by parts with respect to x was carried out in the term

5 0 0

I f a(u (t ,x ) )
~~u~~

(t s x)dxdt
0 -cc

followed by an application of (3.9). It follows from (3.9), (3.10) that

(3.11) 
~: 

u~~(s ,x)d x + a(0)p
0 Lo 

u~ (s,x)dx + 2y 
~ 

Lo 
u~ (t,x)dxdt

< 2a(0) f W(u
0
(x))dx (0 < s < T)

Thus, for as long as ( p )  holds with p ‘C c0
, the quantities

f u~~(s ,x)dx , 

~: 
u s,x)d x , ~ 

~: 
u~ (t,x)dxdt

are controllably small, uniformly on (O,T).

We now derive two additional estimates, the first by differentiating (3.2)

with respect to t, multiplying by utt
(t
~
x) and integrating over (0,s] x It ,

the second by differentiating (3.2) with respect to x, multiplying by u~~(t,x)

and integrating over t0,s] x P. Following the procedure in obtaining (3.10),

and noting that since ut
(O
~
x) 0 one now has

2 a
—j- (k*u

~
) (t,x) = -

~~~~~ 
(k*utt

) (t,x) ,

at
we obtain

—14—
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(3.12) 
~ ~: 

u
~~~

(s tx )dx + ~~~~~~~~~~ L a ’(u~~(s ,x))u
~~~

(s ,x )dx

+ a(0)y 
~ c u~~ (t .x)dxdt ~ ~ Lo u

~~~
(O ,x)dx

+ ~~ -~~~~ --~~ 
~ L a”(u (t,x))u~~ (t,x)dxdt (0 < s < T)

and

(3.13) 
~ ~: 

u~ ~~~~~~~ + 
a(0) 

~ (u (s,x)u2 (s,x)dx

+ a(0)y 
~ L u~~ (t,x)dxdt < 

a(O) L a ’( u 0
( x ) ) u ~~~~(x)dx

+ 
aC O) ~ L~. 

a”(u (t v x))u
~~

(t,x)u2 (t
~
x)dxdt (0 ~ 5 ‘C T)

We add up (3.12), (3.13) and we claim that in the resulting inequality , and as

long as (u) holds with p sufficiently small , each term on the right—hand side

is either controllably small or can be majorized by the sum of such a quantity

and a quantity that is dominated by one of the dissipation terms. Indeed,

since from (3.3)

(3.14) u
~~

(O,x) = a(O)a(u
0
)

the L2(P) norm of u
~~

(O
~
x) is controllably small. The two space-time

integrals an (3.12), (3.13) are majorized as follows

5 0 0

(3 15) 14 / a”(u (t,x))u
3 (t ,x )dxdtl

p 2max Ia ” (- )I I f u~~~(t,x)dxdt
(—c ,c J  0 — c c

-k 0 0

(3 16) 4 ~ L: a ’ u
~~

t ,x u
t~~

Ct ,x u
~~~Ct

,x dxd t

max I a ” (  ) I  I f u 2 ’t ,x )dxdt
1c0 ,c 0 1 0 -~~~

r~ T -‘5-
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To estimate the integral on the right—hand side of (3.16) we have from (3.3)

(3.17) a(0)a’(u (t,x))u (t,x) = u
~~

(tsx) + a(0)k(0)u
~
(t
~
x) + a(0)(kt *u~

)(t , x)

and this yields from (3.7) and standard estimates

(3.18) a2(0)p~ 
~ 

(t,x)dxd t ~ 
~ 

Lo 
u
~~

(t.x)dxdt

+ 4a2(0)k2(0) f L u~ (t,x)dxdt + 4a2(0)(f jk’(t)Jdt)
2 ~~ 

u
2 (t ,x)dxdt

The restrictions imposed on p are expressed in terms of parameters fixed

a priori. For example, the estimate (3.15) and the desire to absorb this term

into the corre~ponding dissipation term in (3.13), impose the restriction

p max la ”(”) ( < ya(0) . The combination of (3.12)-(3.l8) then yields that
[—c 01c0

]

the quantities 

~: 
u
~~

(s,x)dx, 

~: 
u~~ (s,x)dx, 

~: 
u2 (s,x)dx, f J u

~~
(t ix)dxdt

~

c ~: 
u~~ (t,x)dxdt, and 

~~ 
u
2 (t,x)dxdt are controllably small uniformly

on (0,T), provided (p ) holds for p sufficiently small.

To get the final set of estimates one assumes temporarily that the addi-

tional smoothness assumption (3.5) of Proposition 3.2 is satisfied, so that u

satisfies (3.6). We form the second derivative of equation (3.2) first with

respect t, multiply by u
~t~

(t
~
x) and then integrate over (0,s) X

secondly with respect to t and x, multiply by u
~t

(t
~
x)
~ 

and then

integrate over [0,s) c It. Following the above procedure and using equation

(3.3) to compute u (0 ,x) and u (0,x) a tedious but straightforward

calculation (see [11, section 4) :hows that the quantities 
~: 

u
~~~
(:
~
x)dxo

L u~~,~(s1x dx. f  u2 (s,x)dx , f u2 (s,x)dx , f f u~~~dxdt, f f u~~~dxdt,

c u~~~dxdt, ~~ U
2 dxdt are controllably small uniformly on (0,T) ,

provided (p ) holds for p sufficiently small. Moreover, the detailed estimates

show they depend solely on parameters which do not involve the additional assump-

- 

. .  tion (3.5). Therefore, a simple density argument can be used to remove the

extraneous assumption (3.5).
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Combining all the controllable estimates obtained above yields the
** *

inequality (p ) ,  for any local solution u satisfying (p ) for p > 0

sufficiently small. This completes the sketch of the proof of Theorem 2.1.
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